COMPUTER COMMAND AND CONTROL COMPANY

c 2300 CHESTNUT STREET, SUITE 230 - PHILADELPHIA. PA 19103
215-854-0555 FAX: 215-854-0665

D-A284 409 T"“D-nc —
RSRR Y SELECTE

FINAL REPORT

REENGINEERING DOD-STD-2167A
REQUIREMENTS SPECIFICATIONS

CONTRACT N00014-92-C-0242
OFFICE OF NAVAL RESEARCH
ATTN: ELIZABETH WALD
CODE ONR-311
DEPARTMENT OF THE NAVY
800 NORTH QUINCY STREET
ARLINGTON, VA 22217-5000

AUGUST 1994 This documsn1 nas Deen approved
for public 1elecss and sale: its
distribution 13 uniimited]

94-29630
DDA % DTIE QUALETY GTECTED §

Contract Number NOO014-92-C-0242 Final Repert Reeaginerring DOD-STD-2167A Requircmnents Specilications

TABLE OF CONTENTS

1. Introduction 1
2. Input: The Avionics Software 2
3. Output: Software Unit Map and Software Units 3
4. A Guide to Perusing the Outputs 5
Appendix | Project Publications

Appendix Il Examples of Documentation of Software

Units (For Top Two Software Units of Avionics)

LIST OF FIGURES
Figure 1: Avionics Catalog Report. 6
Figure 2: Avionics Software Unit Mapping Summary. 9
Figure 3: Avionics Software Unit Map. 11
Figure 4: Icons, Edges and Legends. 12
Accesion For \
NTIS CRA&)
DTIC TAB O
Unannaunced 0

Justification e

By
Distribution|

Availability Codes

Avail andjor
Drst Special

Al |

Contract Number N00014-92-C-0242 Final Report Reengineeriag DOD-STD-2167A Requiremenis Specifications

1. INTRODUCTION

This is the Final Report under contract N00014-92-C-0242. This contract covered work in two
steps:
1. Design of the automatic system for generating DoD-STD-2167A Software
Specifications from the respective software Ada code.

2. Implementation of this system.

The first step was concluded and documented in a technical report titled, "Automatic Reverse
Engineering of Software to Confirm/Update Requirements Specifications”, June 1993.

This report describes the second step, of implementing the automatic system and using it to
process the software of an Avionics software system.

The report describes the input Avionics software (Section 2), the output of generated documents
of the Avionics software (Section 3) and a guide to perusing the produced documentation
(Section 4).

The documentation that is produced consists of the following:
L. A catalog report listing the produced files of Software Units (Figure 1).

2. The Software Unit Map Summary (Figure 2). This is a hierarchically
ordered list of all the Software Units in the architecture of the Avionics
software.

3. The Avionics Software Unit Map. This is a hierarchical tree depicting
graphically the Software Unit Avionics architecture (Figure 3.)

4. For each software unit, there are:
a. Comments included in the code.

b. A graphic representation and the respective Ada code. The icons in the
graphic representation are shown in Figure 4.

c. A listing of the Ada code of the software units. The documentation for
the top two software units in the architecture hierarchy are shown in

1

Contract Number N00014-92-C-0242 Final Report Resugincering DOD-STD-2167A Requirements Specifications

Appendix II. (A full documentation is available but not included in
this report because of its length).

The work on this contract also resulted in the following publication enclosed in Appendix I,

1. Ahrens, E. Lock and N. Prywes, “The Synthesis of Software Artifacts
with Implementation: Re-creating Requirements Specifications”, 1994
Complex Systems Engineering Synthesis and Assessment Technology
Workshop (CESAW 1994), Washington, DC, July 1994.

2. J. Ahrens, E. Lock and N. Prywes, “Technology for Re-Creating
Documentation”, 4th Reengineering Forum, Victoria, BC, Canada,
September 1994.

2. Input: The Avionics Software

The Avionics demonstration example is a subset of a helicopter simulation system originally
programmed in Ada. This subset specifically deals with the fly-to-point operation of a helicopter
navigation sub-system. X and Y coordinates are input and a clock pulse relays real-time event
input for calculation of speed, altitude, trajectory, and distance. The Avionics software is
comprised of a series of Ada tasks: one for the clock, one for the simulation, two for input and
output, two for message mailbox handling, and one controller for activating and synchronizing the
other tasks; in total, seven tasks facilitate the actions of the overall system. In this demonstration
example of the Avionics system, there are 842 lines of source Ada code.

3. Output: Software Unit Map and Software Units

The purpose of the Avionics documentation shown below is to illustrate the various components
of the re-engineering transformation process. The system-wide "road-map" is the Catalog Report
(figure 1); this report indicates a particular transformation component and shows its position
within the hierarchy of the transformation unit. A transformation unit is the total code submitted
at one time for processing. During the transformation, criteria for software unit partitioning are
specified to aid in software understanding when the visualization tool is utilized. The Software
Unit Mapping Report (figure 2) identifies the partitioning and encapsulation criteria, the number
of resultant software units, the name of each unit, and each unit's tree code which identifies its
position in the hierarchical breakdown of the transformation unit.

In the transformation process of re-engineering this code, 25 in-the-small (ITS) software units
were created. (In-the-small entities are Ada bodies: package, procedure, function, task, generic,
etc.). The partitioning and encapsulation criteria produced 34 software units, which are in-the-
large (ITL) entities (i.e. containing no Ada bodies). In total there are 59 software units. Each of

Contract Number N00014-92.C-0242 Final Report Reengineering DOD-STD-2167A Requiremenis Specifications

these transformation entities is identified within the documentation, and their corres~onding Ada
and graphical views are presented.

The partitioning and encapsulation phase of the transformation process creates a natural hierarchy
among the partitioned software units. This hierarchy is signified textually via a numerical
indicator called a rree code. Much like sub-sections of a paper, the dot (.) notation in the rree
code indicates descendant/ancestor relationships. The breakdown and representation of the
overall resulting hierarchy is textually represented via the Software Unit Mapping Repor:. In
addition to this report there is a graphical view which illustrates the hierarchical relationship via a
standard ER style representation. This Software Unit Map view is shown in Figure 3 below. In
order to understand the graphical views, Figure 4 shows the icons and edges along with their
symbolic meanings.

In regard to Figure 3, the Avionics Software Unit Map, the partitioning and organization is
explained in the following. At the highest level there is the system node AVIONICS, its tree code
is 1 signifying it as the root node. That system can be logically partitioned into three child
systems: HELI_MAILBOXING (1.1), HELI_PROCEDURES (1.2), and HELICOPTER (1.3).
These three partitions encapsulate the functionality of mailboxing tasks in HELI_MAILBOXING
(1.1), support procedures in HELI_PROCEDURES (1.2), and the main procedure, support
procedure tasking shells and controller task in HELICOPTER (1.3). By creating this type of
partitioning, functions logically associated to each of these child systems can be easily added or
maintained. For further definition of each of these three child systems, they in turn are partitioned
into even more specific functional systems. Each is described as a separate section below.

1.1 HELI_MAILBOXING is partitioned into two child systems:
HELI_MBX_WITH_AND_USE (1.1.1) contains all the context nodes (i.e. Ada "with" and
"use™) for HELI_MAILBOXING (1.1); HELI_MBX_PACKAGE (1.1.2) contains two child
systems which represent the main mailboxing tasks. EXAMPLE HELI_IO_MBX (1.1.2.1)
maintains the mailbox for all I/O messages; EXAMPLE_HELI_SIM_MBX (1.1.2.2) maintains
the mailbox for all messages to and from the simulation module. If additional mailboxing tasks
were required, or the existent ones needed updating, this organization of partitioning allows for
clear and understandable functional delineation.

1.2 HELI_PROCEDURES also is partitioned into two child systems.
HELI_PROC_WITH_AND USE (1.2.1) contains all the context nodes for
HELI_PROCEDURES (1.2). The systtm HELI_PROC_PACKAGE (1.2.2) represents a
package of all the main supporting procedures.

CLOCK (1.2.2.1) is the system representing the clocking procedure for real-time event pulse
computation. It has two systems representing: the function GET_MAX (1.2.2.1.1) which relays
the number of tasks in its execution diameter; and the procedure MBX_WRITE (1.2.2.1.2) which
sends the clock pulse to the simulation mailbox.

HELI_IO_PROCS (1.2.2.2) is a system provided for logically grouping the I/O procedures.
There are two /O procedures which deal with operator input (via a keyboard) which requires

Caontract Number N00014-92-C-0242 Final Report Recagineering DOD-STD-2167A Requiremesis Specifications

parsing, and informatory output (via a display). Therefore, two child systems appear. DISPLAY
(1.2.2.2.1) handles all output to the screen. DISPLAY receives data from a mailbox through its
child procedure MBX_READ (1.2.2.2.1.2). DISPLAY's other child, GET_MAX (1.2.2.2.1.1),
relays the number of tasks in its execution diameter. The input system procedure is PARSER
(1.2.2.2.2); it is responsible for obtaining and parsing user input; it then sends information to
either the simulation module or to the display module via a mailbox. The PARSER child system
MBX_WRITE (1.2.2.2.2.2) handles the output going to the mailbox. The other child,
GET_MAX (1.2.2.2.2.1), relays the number of tasks in its execution diameter.

Finally, the system SIMULATE (1.2.2.3) represents the main simulation procedure. It is this
module which calculates fly-to-point parameters to carry out the helicopter simulation.
SIMULATE receives and sends data via a mailbox. Therefore, it has two child systems to handle
these actions: MBX_READ (1.2.2.3.2) for input messages from CLOCK and PARSER, and
MBX_WRITE (1.2.2.3.3) for output messages to DISPLAY. GET_MAX (1.2.2.3.1) relays the
number of tasks in its execution diameter.

By partitioning the main supporting procedures in this manner, adding a new system like RADAR
becomes very straight-forward. It is clear within the above partitioning that a system node such
as RADAR could be added with a tree code of 1.2.2.4; a brother node to SIMULATE (1.2.2.3).

1.3 HELICOPTER is the third child system of AVIONICS. Its child
HELICOPTER_WITH_AND_USE (1.3.1) is a system containing the context nodes for
HELICOPTER. The system HELI (1.3.2) breaks down into four child systems which in turn
control the entire simulation. CLOCK_S (1.3.2.1) is the task shell for the CLOCK procedure.
HELICOPTER_IO_TASKS (1.3.2.2) logically groups two children associated with I/O:
DISPLAY_S (1.3.2.2.1) is the task shell for the DISPLAY procedure, and PARSER_S
(1.3.2.2.2) is the task shell for the PARSER procedure. SIMULATE_S (1.3.2.3) is the task shell
for the SIMULATE procedure. The systtm CONTROLLER (1.3.2.4) is a task responsible for
starting and coordinating all of the other tasks. It utilizes its child procedure system INDX
(1.3.2.4.1) to start the tasks in the appropriate order. The child function system ALL_DONE
(1.3.2.4.2) informs the CONTROLLER when the tasks have terminated, thereby allowing it to
terminate the simulation.

The SRE environment is flexible enough to allow the user to modify this partitioning at any time
during the Software Understanding process. Through the addition of system nodes or a change in
partitioning criteria, the view of software units can be produced to satisfy any level of system
delineation for better understanding. The above partitioning example provided a clearer
understanding of the Avionics source Ada which was not organized in such a functional manner.
By using system nodes and adding criteria for package, task, procedure, and function partitioning
the above mapping was produced.

Contract Number NON014-92-C-0242 Final Report Reengineering DOD-STD-2167A Requirements Specifications

4. A Guide to Perusing the SRE Outputs

Throughout the SRE re-engineering transformation process, reports are produced which aid in
understanding. As mentioned earlier, the SRE environment maintains a caralog of transformation
units. Each transformation unit has many sub-entities related to it: original source code files,
ESL files, software units, in-the-small units, report files, possibly generated Ada and eventually
compilation make files. The catalog identifies each of these entities by a name and points to its
physical disk location. The tree code hierarchy mentioned above is also stored in the catalog so
that the user may have "quick” knowledge of the transformation unit’s overall breakdown in
hierarchy.

During the Software Understanding phase, which utilizes DEC Design, the user may perform a
number of retrievals which help to more fully understand a piece of the resuitant transformation.
These retrievals may be textual, such as all the comments within a software unit, or graphical.
This "book” is a compilation of information for each of the resultant sub-entities of the Avionics
transformation unit. The Catalog Report shows each entity entry and the Seftware Unit
Mapping Report summarizes the naming and hierarchy of the software units. For each software
unit and each in-the-small unit there can be a number of retrievals. Within this report appear 3
basic retrievals: comments for each unit, the graphical view of the unit showing only scope edges,
and the generated Ada for the unit. As such, each unit is arranged according to its position in the
hierarchical breakdown by mree code reference. The software units appear first and are then
followed by the in-the-small units. Please refer to Figure 4 for interpreting the SRE icons and
edges when regarding a graphical view.

Contract Number N08014-92-C-0241 Final Ropert

P R R R R P R PP I P IR R AP RV F NN TR TR NIRRT AN PRIV NI VNIRRT AN PR PPN AW AT N T TR

Computer Command and Concrol Company 3RE Catalog Report Generacor

R R R R R N E R A A R A R A R R AR R RS R A AR N AR A SRS AR Rl RS Al A Ad

CATALOG FILE REPORT FOR: DATESDISK: (SRE_TEST.RT!CATALOG.DAT
catalog report created on 3-4-1994 ac 15:00:20

This catalog contains the following Transformation Unituts):
avionics

Transformation Unit: avionics

Source Language Files: language {Ada)
kiwiSdubQ: [sre_test.rz avionics_tesz.ada
ESL Tuple Tree File: avionics (ESL Tuple Tree)
Kiwisdubl: (sre_zest.rtjavionics.:=p.
ESL Symbol Tree File: avionics (ESL Symbol Tree)
kiwisSdupQ: {sre_zest.rtojavionics.sym
Unit ESL Files:
In the Large: avionics (ESL In the lLarge)
kXiwiSdub0: [sre_zest.rt}avionics..rg
Unit Mapping File: avionics fSoftware Uni: Map!
xiwisdunl:avionics_e_unit_map.
Unit Mapping Report:avionics (Software Uni:z Map Repor:)
kiwiscubQ:avionics_s_unit_map.Tx:t

Software Unit Files:1 AVIONICS (SYSTEM)
xiwisdunl: {sre_zest.rn AVICNICS. O
1.1 HELI_MAILBOXING {SYSTEM:
kiwisdunl: [sre_test.rriHELI_MAIL3CXING.L_ -
Z.1.. HELI_MBX_WITH_AND_JS=Z (3YETEM]

xiwisdub0: {sre_zesc.rz HELI_MBX_WITH_AND_USE.

-

L.1.2 HELI_MBX_PACXAGE (PACX_3C2Y}
<'w1$cu Q:(sre_test.ro|HELI_MBX_PACXAGE. L 1<
.. ZIXAMPLE_HELI_I0_MBX (TASKL -CDY)

bae
h)i m

.2 EXAMPLE_HELI_SIM_MBX TASK SCDV
wiSdubQ: {sre_zest.rtEXAMPLE _HEL
'ELI_?ROCEDURES (SYSTEM)
LSdubO:[sre_tesc rolHELI_PRCCEDURES.._Z
HELI_PROC_WITH_AND_USE {G7STEM)

|.a.

o
‘k oy

HELZ _PROC_PACKAGE {PACK_3CDY?

-

.1 CLOCK {PROC_3CDY!

isdupQ: (sre_test.z-]CLOCK.1 _I1_ 2.1

1.1 GET.MAX {FCN_30DY)

15dupl: {sre_ :esc r=JGET_MAX.I_Z_Z_1_ 1%
.1.2 MBX_WRI (PRCC_BODY)

18dubl: [sre_ test re]MIX_WRITE.I_Z2_2 1 2
.2 HELI_IO_PROCS (SYSTEM)

SdubO [sre_test.rt]|HELI_ZO_PRCCS.L_Z_CZ. 2
,2.. DISPLAY { PROC_BODY)

1sduoo [sre_test.rt)DISPLAY.. 2 _2_2_1

1.2.2.2.%. 1 GET_MAX {FCN_BODY)

k1 xsduoo.[sre_test.rt]GET-ﬁAx.l_2_:_2‘1*1
2.2.2.1.2 MBX_READ { PROC _BODY?

kiwiSdubd: [sre_test .rt]MBX_READ.L 2 2 2 1 Z
1.2.2.2.2 PARSER { PROC_BODY)

kiwisdubd: [sre_test.rt)PARSER.1_2_2.2_2
1.2.2.2.2.1 GET_MAX (FCN_BODY)

\)Z‘NZ t\);; NA h.ll; I\JAhJ?\ I\J/\K\JA;"AD

di

Ciwisdubl: [sre_test . rrt|GET_MAX.1_ 2 2 2 Z 1
1.2.2.2.2.2 MBX_WRITE (PROC__30DY)
kiwi$dubl: [sre_test .rt|MBX WRITE.L_ 2 _2_2_Z_2

Figure 1: Avionics Catalog Report.

1$auco (sre_test.rz HELI_PRCC_PACKAGE.._2_C

15dubl: fsre_test. ::‘:xAMP" HELI_IZO_MBX.._ -

-

Z_SIM_MBX.I_I_I_

I-llﬂllliqlnlﬂ)GTTFZICZAlhq.h‘.ulﬂl&padﬂttdﬂﬂi

lsdh 0:[sre*:est.::}HEL:_?RCC_N:TH_AND_TSE.;___-

Contract Number N00014-92-C-0242 Final Report

e

-~ -

=he Small:

Figure 1:

Reengineering DOD-STT2167 A Requirem.ats Specifications

.2.2.3 3IMULATE 'PRCC_3Ccry

xzw1$dupQ: (sre_zest.rT,3IMULATE . L_Z_C_:
L2.2.3.1 GET_MAX {FCN_3CPT,

xkiwisdupQ: {sre_sest . ro.GET_MAX. _2_2_3_.
.2.2.3.2 MBX_READ {PRCC_3CDY!

xiwiSdupnl: [sre_test.r= MBX_READ.L_C_IT_3I_2
.2.2.3.3 MBX_WRITE 'PROC_30rY)

kiwiSdubl: sre_rest. st MBX_WRITE.._2_2_7_3

.3 HELICOPTER (SYSTEM)

<iwi$Sdubl: (sre_zest.rz!HELICOPTER. . _

.2.1 HELICOPTER_WITH_AND_TUSE {3YSTEM)
<iwisdubl: {sre_test.zz HELICOPTER_NITH_AND_USE.>_3_:
3.2 HELI (PRCC_BODY}

kiwisdub0: [sre_test.zz|HELI.._3_2

2.1 CLOCK_3 {TASK_30DY;

xiwiSdub0: {sre_test.r:!1CLOCK_S.1_3 2_°1

.3.2.2 HELICOPTER_IC_TASKS {SYsSTEM!

xiwiSdubl: [sre_test.rz!HELICCPTER_IO_TASKS.L1_3_ 2 =
.3.2.2.1 DISPLAY_S !TASK_3CDY)

xiwiSdubQ: [sre_test. rziDISPLAY_3.1_3_ 2 Z2._:
.3.2.2.2 PARSER_S3 ' TASK_20DY)

«iwiSdubl: (sre_zest.ry=,PARSER_3.._3I_2__2
.3.2.3 SIMULATE_S s TASK_BODY)

<iwNiSdubQ: {sre_zest.r=!SIMULATE_3.._3_2_3
.3.2.4 CONTROLLER {TASK_3CDY)

<iwisSdupQ: [sre_tesc.y=|CONTROLLER.I_3I_Z_4
,2.2.4.L INDX (FCN_3CDY!

<iwisSdubl: ‘sre_zest.rzINDX.1_3_I_4_3
.3.2.4.2 ALL_DCNE V_BC“Y¥

k;wisdubﬂ:’s'e test.rT ALL_ZCNE.L_Z2_Z_ 4 °
. 2.2 HELI_MBX_PACXAGE ,:SL in the small)
kiw;ScunO.gsre_:es:‘:: HELI_MBX _PACXAGE.SML

L2 2.0 EXAMPLE _HELI_TC_: p zhe sma..’

‘wisdubl: isre_=est.rz!= _-C_MBX.3ML
L. 2.2 EXAMPLE_HELI_SC The small:
MEX . SML

‘-:sre_:esb.-

~he sma.l}

T

PRCC_PACKAGE . 3ML

rzHELI_

:{sre_:es:.* o

..... 1 CLOCX {ESL in zhe small)
<iwi$Scubl: {sre_zest.r= CLICX.SML
L2.2.1.1 GET_MAX (ESL in zhe smail)
<=wisSdubl: isre_test.rz|GET_MAX,3ML
.2.2.1.2 MBX_WRITE (ZSL in zthe small)
k;wiSduoO:{sre_:est.::]MBx WRITE. SML
.2.2.2.% DISPLAY (ESL in the small)
k2wisdubl: [sre_testc.r IZPLAY.SML
L2.2.2.1.1 GET_MAX_Z SL in the small)
xiwiSdubQ: [sre_rtest.rT GET_MAX_..3ML
.2.2.2 1.2 MBX_READ i:su in the smaii}
<iwiSdubl: {sre_test.r=iMBX_READ.3SML
.2.2.2.2 PARSER (ESH in the small)
XiwiSdubl: {sre_ best rC ! PARSER. SML
L2.2.2. 2,1 GET_MAX_Z {(ESL in the small)
kiwi$dubl: {sre_test.rt]GET_MAX I.SML
L2.2.2.2.2 MBX_WRITE_. (ZSL in :he small}
kiwi SdubO [sre_test.rt!MBX_WRITE_I1.SML
.2.2.3 SIMULATE (ESL in the smalli
xiwiSdubl: [sre_test.rt]SIMULATE. SML
.2.2.3.1 GET_MAX_3 (ESL :in the small}
kiwisdubl: {sre_ -esc.r:fGET_MAX_B.SML
.2.2.3.2 MBX_READ_1 (ZSL in the small)
kiwiSdubQ: [sre_ tesc rZ,MBX_READ_1.3ML
.2.2.3.3 MBX_WRITE_Z {ESL in the small)
x1 wlSdubO [sre_test.rz]MBX_WRITE_2. SML

Avionics Catalog Report (Continued).

Contract Number N00814-92-C-0242 Final Repert Rsu.h-nﬂngﬂtl)STI&&lGh&Ibquhu-uﬂmsvedﬂuu*nn

Z.3.2 HELI (ESL in %he =mail)
xiwiSdubQ: (sre_zest.rc;HELI.3ML
.3.2.1 CLOCK_S (2SL in :zhe zma.l.
xiwiSdubl: [sre_testc.rs CLOCX_3.35ML
.3.2.2.1 DISPLAY_3 (ESL in zhe sma.l!
xiwisdubQ: {sre_zest.r= DISPLAY_3.3ML
1.3.2.2.2 PARSER_3 (ESL in =he smal.l}

kiwisSdubl: [sre_=est.rt]PARSER_3.3ML
1.3.2.3 SIMULATE_S (ESL in the sma.l;

kiwiSdubl: (sre_zest.rz] SIMULATE _3.35ML
1.3.2.4 CONTROLLER (ESL in zhe smallj

xiwiSdub0: (sre_test.rc!CONTROLLER.SML
L.3.2.4.1 INDX (ESL in the small)
kiwi$dub(: (sre_<est.rr ! INDX.3ML
.3.2.4.2 ALL_DCNE (ESL in the sma.l}
XiwisdubQ: (sre_zest.rtiALL_DCNE.SML
Compilaction Makefile: avionics {Cempilacion Order!

file: nct availabie

b

b

[

Znd Transformation Unit

Figure 1: Avionics Catalog Report (continued).

Comtract Number N00014-92-C-0242 Final Report
Reengineerin
g DOD-STD-2167A Reguirements Specifications

Q"t.vv'-"'-l"t."'t-'.t'd'tttt-'wt'-'v'nv'v"vvvv--Q""t'!tt-tcttt-v.vt.qav

* PARTITION and ENCAPSULATION SUMMARY

. SRCJECT: avionics
hd JATEZ: wed Apr 27 153:28:.2 1994

. ENCAPSULATION: INCLUDED
* PARTZTION CRITERIA:

. 3YSTEM

* PROGRAM_FILE
* PACX_30DY

N TASK_BODY

* PROC_BODY

’ FCN_BODY

* TCTAL UNITS: 34

. NCTE: The hierarchy of Software Units is represented Dy the tree zodes.
.

'f'r"'t-'tf'f!'"'t't"'"*QQ"'*'I"!"I""""'!"1""""'I't.'t""""'

: AVICNICS {SYSTEM) :30 nodes
AJ’ONICS 1

p HELZ _MAILBOXING {SYSTEM) :24 nodes

HELI_. 1A4LnOX-N .

PR HELZ _MBX_WITH_AND_ JSL 18ZSTIM) 3 ncdes
SELT_MBX_WITH_ AND_USE. L 1. .°

.2 HELT_MBX_PACKXAGE { PACX_3CCY’ 2 nodes
EEL¢_MBX_°RC<AGE.l_l_-

DA IXAMPLE_HELI_IO._MBX {TASK_3CCY ;2 nodes
SYAMPLE_HELI_IO_MBX.L_ l_ a_Z

L.n.l.2 ZXAMPLE_HELI_SIM_MBX {TASK_3CCY) :2 nedes
TXAMPLE 4ELIZ_SIM_MBX.._1_ I 2

P 4ELI_PROCEDURES {SYSTEM} 143 nodes
uELs_PRCCEDURES.C

L.el SELT_PROC_WITH_AND JS; {SYSTEM: 118 nodes
4201 DROC_NITH_AND_ TST.I_I_ L

L.2.Z 4ELI_PRCC_PACKAGE { PACKX_3CCY) ;77 nodes
4ELI_PROC_PACKAGE. L - -

L.2.2.1 [agateln e (PRCC_3CLY! ;T nodes
QLOCX.1_2_2.%

AR o, SET_MAX {FCN_3CDY!} :2 nocdes

-

”T_MAX.;_E_E 1.

1.3.1.2 MBX_WRITE (PROC_3CDY} 2 nodes

¥MBX NRITE.1.S_2_ .2
L.2.2.2 HELZ_I0_PROCS ({SYSTEM! ;27 nodes
SELI_TIO_PRCCS. 1_S_32_
2.2.2.1 DISPLAY { PROC_3C2Y! .12 nedes
DISPLAY.l_Z_Z_Z_l
+.2.2.2.0.. GEY MAX (FCN_3CLY} :2 nodes

GET_MAX.._ 2 2 2_1.°

- 2 2.3...2 MBX_READ (PRCC_3CODY! :1 nodes

MBX_HEAD.I_Z_Z_;ml,
. PARSER (PRCC_3CDY! :3 noces

(D]

L.2.2.2.0
PARSER.1_2_2.2.2
< 2.0.3.0.. GET_MAX (FCN_BCDY) .2 nodes

s 2. %.2.2.2 MBX_WRITE { PROC _3COY) nodes

MBX_WRITE.1 2 2.2 2.2
1.2.2.3 SIMULATE (PROC_30DY) 113 nodes

SIMULATE.1_2_2..
1.2.2.3.0 GET_MAX (FCN_BCDY) 12 nodes

GET_MAX.1_2,2“3_1
2.2.3.2 MBX_READ {PROC_BOCY? ;2 nodes

Figure 2: Avilonics Software Unit Mapping Summary.

Contract Number N00014-92-C-0242 Fimal Report Reenginecring DOD-STD-2167A Requirements Specifications

MBX_READ.1_2_2_3.2

1.2.2.3.3 MBX_WRITE { PROC_3QDY; 12 nodes
MBX_WRITE.._ 2 2.3

A HELICOPTER (SYSTEM) 122 ncdes
HELICOPTER.1_3

1.3.2 HELICOPTER_WITH_AND_USE (SYSTEM) :20 ncdes
HELICOPTER_WITH_AND_USZ.._3_1

1.2.2 HELI { PROC_30DY) :23 nodes
HELI.1_ 3.2

1.3.2.1 CLCCK_S {TASK _30DY! 12 nodes
LOCK_S.1_3_2_.1

1.3.2.2 HELICOPTER_IO _TASKS (SYSTEM) : .. nodes
HELICOPTER_IO_TASKS..1_ 3 _2_12

1.3.2.2.% DISPLAY_S (TASK_30DY!} :2 nodes
DISPLAY_S.1_.3.2.2_2%

1.3.2.2.2 PARSER_S (TASX_3CDY) 12 nodes
PARSER_S.1_3_2_2_2

1.3.2.3 SIMULATE_S (TASK_30DY) :2 nodes
SIMULATE_S.1.3_.2_3

1.3.2.4 CONTROLLER (TASK_30DY) :5 nodes
CONTROLLER.1_3_.2_4

1.3.2.4.2 INDX {FCN_300Y: :2 nodes
INDX.1._3_2_4_°2

t.3.2.4.2 ALL_DONE (FCN_30DY) 2 ncdes

Figure 2: Avionics Software Unit Mapping Summary (continued).

10

Contract Namber N00014-92-C-0242 Final Report Reenginesring DOD-STD-2167A Requirements Specificstions

Figure 3: Avionics Softw=-e Unit Map.

1

Contract Number N00014-92-C-0242 Fimal Report Reengineering DOD-STD-2167A Requirements Specifications

IS

Packa_ge
Generic. Cong Stmt
E;-d_ggg_ss:-_]___sm ' Assign Stmt |
S 4 |
. - B .*
i

ﬁPackage Ba_d_yl . Body Calt Stmt

sessesavaces, |

\ceeneeennd =l
Task Type [Martable Type Message Stmi
AN s
|
Task Spec VO Stmt !
Task Bady Loop Stmt___|
] |
- ol .5t ... m ‘
Scope_Tuple e
(Straight) __|Call Tupie ?o Twle __|Context Tugle
e i o> —_—
Fntry_Call Schedule
jMemory Tuple [Type Tuple _ {Tuple Tuple

Figure 4: Icons, Edges, and Legends.

12

Comtract Number N00014-92-C-0242 Final Report

Reengineering DOD-STD-2167A Requiresaents Specifications

APPENDIX 1

PROJECT PUBLICATIONS

13

c COMPUTER COMMAND AND CONTROL COMPANY

c C
% 2300 CHESTNUT STREET. SUITE 230 . PHILADELPHIA PA *3123
- 215-854-C585 FAX: 215-354-3665

The Synthesis of Software Artifacts
with Implementation:
Re—creating Requirements Specifications

1994 Complex Systems Engineering
Synthesis and Assessment
Technology Workshop (CSESAW ’94)

July 19-20, 1994
Washington, DC

Dr. Judith Ahrens’, Mr. Evan Lock, and Dr. Noah S. Prywes*
Computer Command and Control Company
2300 Chestnut Street, Suite 230
Philadelphia, PA 19103
Tel: 215-854-05535, Fax: 215-854-0665
Email: lock@cccc.com

T Also with Drexel University
*Also with University of Pennsylvania

Abstract

There is a strong tendency in the Department of Defense Programs to re~develop new software
when legacy software can be reused at lower cost, reduced development time and higher quality
based on real-life experience. The decisions for re—developing software are frequently based on
inadequacy, or sometimes lack, of documentation and the difficulty of understanding the legacy soft-
ware. The cost of software understanding has been estimated at 50% of the cost of reengineering.

This paper describes an approach and toolset that synthesizes automatic processing of legacy
code to produce a graphical explanation of the software architecture, and to generate reliable soft-
ware specifications documents in accordance with DOD-STD instructions. The need for this capa-
bility is widely recognized.

This capability has been under development for the past 3 years. It consists of integrating the
Software Reengineering Environment (SRE), funded by the Naval Surface Warfare Center
(NSWC), and the Software Specification Assistant (SSA), funded by the Joint Logistics Command-
ers—Joint Policy Coordinating Group on Computer Resource Management (JLC-CRM). The devel-
opment is nearing completion and a demonstration project is planned.

1. MOTIVATION

At a recent workshop on Reengineering (Fourth Systems Reengineering Technology Work-
shop, February 8-11, 1994, Monterey, CA), several speakers reported that understanding legacy
software accounts for 50% of the cost and time of reengineering. At this high cost, Program Manag-
ers tend to write off all or parts of the legacy software and develop new system modules or entirely
new systems. Thus, there has been a widely recognized need for automating software understand-
ing.

Another widely recognized problem is the frequent unreliability, incompleteness and some-
times total lack of software documentation. Software documentation is produced in many software
development projects as the last step and tends to be short-changed. There has been no effective
procedure to determine the quality of submitted documentation. The inadequacy of documentation
has also prevented verification that the software provides the capabilities established in planning,
specifications and contracting documents.

Programs across DOD need to be able to:

i. Check conformance with Software Specifications in periodic Contractor reviews
and upon delivery of a new system,

ii. Update obsolete specifications,
ili. Create specifications for undocumented software,

iv. Understand existing software architecture (for reuse).

The proposed capabilities will have a wide ranging impact on:

i. Reducing maintenance costs by graphically explaining the architecture and opera-
tion of the software.

ii. Increasing system life through adding new builds incrementally based on explaining
graphically the architecture and operation of the software.

iii. Facilitating modernization through exposing the steps necessary to execute the sys-
tem in a modern distributed computer communications environment.

iv. Improving yuality and usefulness of systems through facilitating verification of a
system in reviews that assure conformance with the requirements, specification and
contract for the system.

The next section describes the two toolsets (and their interface) that are the basis for providing
the above capabilities. The third section describes how the two tools are used together to define an
approach to re—create documentation. Section 4 reviews status and plans.

2. TECHNOLOGY
Two automatic tools, used in the automation of software understanding and documentation. are
shown in Figure 1. They are:

e The Software Reengineering Environment (SRE) [SRE]: It has been de-
veloped under the sponsorship of the Naval Surface Warfare Center
(NSWC). It incorporates software translation to Ada (from CMS-2 and in
the future from FORTRAN) and the abstracting of Ada code to re—create
graphically the architecture and the data and control flow.

* The Software Specification Assistant (SSA) [SSA]: It provides tools
(COTS) for searching historical documents and the editing and formatting
necessary for creating and updating software specifications.
Each of these environments are described further below. These descriptions provide the basis
for explaining how the capabilities are synthesized as part of a cohesive approach for document re-
creation.

Legacy
or Reuse — g
Software

Software Reengineering
Environment (SRE)

Software Specification
Assistant (SSA)

S/W Abstractions:

- —8 1. Module Hierarchy

l(Ada and/or

Older Lan- E

guages) a
{

Software
Visualization

Diagrams

Located at Software
Development
and Support Activities

Diagrams

2. Data Flow Diagrams

3. Module Interface
Diagrams

4. Object Use Diagrams

5. With/Use Diagrams

6. Text of Comments

Software
Requirements/
Specifications:

Documents
For Projects or
Reuse

- Q__.
>

3=

Document
Repaository

Stand Alone PC Based
at Program Offices
and Contractors

Figure 1: Process of Re—creating Software Specifications.

2.1 Software Reengineering Environment (SRE)

SRE incorporates the technologies of software translation, visualization, and understanding.
SRE'’s architecture and capabilities are shown in Figure 2. The SRE consists of two phases, Sofnware
Restructuring and Software Understanding.

Software Restructuring

Legacy Software

Ada

FORTRAN

Parsers

Translators

Software Understanding

Analysis

- Graphic
Representations

- Memory
Allocation
(in CMS-2,

FORTRAN)

- Reorganization
(Object Oriented)

- Relationships
and Interfaces
(enumerated later)

. Graphic
"f Repository

~_

Documentation

- Architecture
- Datafiow

Interfaces
Objects
Compilation
Dependency

Ada Code

- for Views

Figure 2: Architecture and Capabilities of the Software Reengineering Environment (SRE)

Software Restructuring parses and translates CMS-2, Ada and, in the future, FORTRAN code,
statement by statement, into Entity-Relation-Attribute (ERA) diagrams of pseudo—Ada [PRYW].
This diagramming scheme is called Elementary Statement Language (ESL) for Ada. Next, the
ESL-Ada is transformed repeatedly to obtain an Ada programming paradigm in a series of passes
that achieves 100% translation to Ada. Each pass translates different aspects of the programming
paradigm of the source language into the Ada programming paradigm (e.g., separating object speci-
fications from bodies). During the translation process, a number of sets of relations among program
statements are generated. The statements form nodes, and the relations form edges, in the ESL-Ada

graphic diagrams.

Software Restructuring partitions the software into multi-level hierarchical software compo-
nents. Software Abstraction Documents (shown in Table 1) are then generated. They describe hier-
archically the architecture of these components from different perspectives. Component diagrams

are stored in a graphic repository.

Abstraction $/SS System/Segment S/SDD System/ SRS CSCI IRS CSC1
Document Segment
Hierarchy Diagram Par. 3.1, 3.2.3 System [Par. 4 System Par. 3.1 CSCI Par. 3.1. CSCI
Architecture Architecture External Internal
Diagram Diagram Interface Diagram Interface Diagram
Flow Diagram Par. 3.3 CSCI
Internal
Interface Diagrams
Interface Table Par. 3.3 CSCI Par. 3.x.1 Data
Internal Element Table
Interface Diagrams
Context Diagram For Ada Compilation
Object/Use Diagram For Object Orientation
Comments Text For Capabilities

Table 1: Mapping Software Abstraction Documents into Software Specifications.

Software Understanding (SU) consists of query and retrieval of graphic diagrams that illustrate
the software from various perspectives. A graphic query language is provided for ad hoc browsing
of the Software Abstraction Documents in the graphic repository. These graphs show relations be-
tween high or low level hierarchical components. This facilitates understanding of the software’s
architecture as well as its detailed code [PRWY3]. Facilities are being developed to make changes to
the program, for debugging or program restructuring, via the graphics used for visualization. Soft-
ware visualization overcomes the essential invisibility (i.e. non—physical quality) of software by
representing graphically the program structure, control flow, and data. An abstract, graphical repre-
sentation can facilitate a software engineer’s visual perception and cognitive understanding of com-
plex software during debugging, monitoring, and especially, program restructuring. in this way.
maintenance can be performed on the reverse engineered design and/or transformed old code.

2.2 Software Specification Assistant (SSA)

SSA [SSA] was designed for project technical management. It is an integrated set of informa-
tion repositories and tools for software specification of critical mission systems. It instructs and in-
forms novice to expert staff in specifying, updating and evaluating DoD-STD data item descriptions
(DIDs), including the System/Segment Specification (SSS), System/Segment Design Document
(8/S, Software Requirement Specification (SRS) and Interface Requirements Specification (IRS) of
DoD-STD-2167A (and similar documents on its planned successor DoD-STD-SDD) [2167A].

SSA maximizes the effectiveness of supervisory staff who are experts in the preparation of re-
quirements specifications, and provides an automated mechanism for novices to upgrade their skills.
SSA thus provides two modes of operation. In supervisory mode, using the Status Manager subsys-
tem, the supervisor structures the requirements specification tasks and monitors progress. In activity
mode, the Step-By-Step subsystem, guides a novice specifications analyst through the required
work processes. SSA thus embodies much of the knowledge found in supervisory staff, enabling an
organization to make efficient use of this scarce organizational resource.

SSA is composed of four customized subsystems. The function of the subsystems is as follows:

* Documentation Manager is used to create catalogs of application and ref-
erence documents in databases.

* Assignment Manager is used by a manager or supervisor to enter the work
plan for staff who compose or update documents.

* Step-By-Step guides users engaged in searching documents and compos-
ing/updating Requirements and Data Items.

¢ Evaluate provides feedback on the completeness of the specification cov-
erage [ARTH].
SSA also integrates the following commercial off-the—sheif software (COTS): document load-
ing and publishing (e.g., Interleaf, MS~-WORD, or Word Perfect), Search (Zyindex), CASE (de-
pends on use by the Program Office).

The Assignment Manager subsystem enables a supervisor to create a documentation plan and
assign subordinates. The process is accomplished by selecting the appropriate function from the
Status Manager pulldown menu. For each project, tasks are allocated, organized and controlled
through a hierarchy of three lists: Things to Do, Target Documents, and Target Document Para-
graphs.

In the Things To Do List the supervisor enters the tasks that need to be accomplished. Examples
include: work on entries from an operational requirements document’s table of contents, work on
items from a functional decomposition, or work on items requiring specification. For each task, the
supervisor references a previously loaded document (or equivalent) that expands on the item in the
Things To Do List. For example, clicking on the Things to Do list reveals a definition of its entries.

The Target Documents List contains the names of specification documents to be created or
updated. The Target Document Paragraph contains the Paragraphs to be created.

At each of the three list levels, the user and the supervisor can record relevant instructions or
status information such as priority of the item, problems encountered in completing the item, or
sources of information used to complete the item.

After organizing the work needed to complete a plan, the supervisor assigns the work to subordi-
nates. The subordinate will use the Step-By-Step subsystem.

The Step—-by-Step Subsystem guides the user through the process of preparing requirements
specifications. Step-by—stepis an iterative process. Once atask and associated target documents are
selected, the user iterates, in various combinations (even during different sessions), to search for
application information and assistance, to compose data items, and to record a trace, until the se-
lected task is completed. Then, the user will select another task from the list of Things to Do and
repeat the process.

3. Approach: Interfacing SRE and SSA

The previous sections provided background on SSA and SRE. With these two capabilities
available, the next question to answer is — what are the necessary abstractions that the SSA user needs
to recreate specifications and can SRE produce these abstractions? The answer is that there are six
basic types of abstraction/information (see Figure 1) that comprise the interface between these two
tools [PRYW?2].

The diagrams are created by traversing the repository for nodes with the following relations:

1. Hierarchy Relations: The entire repository is envisaged structured as an up-
side~down tree-like hierarchy. The root unit of the tree is called a System. Its
immediate descendants are called Segments. Segments can have as descen.dants
Segments or Computer Software Configuration Items (CSCI). CSClIs can be ob-
ject declarations, database declarations or major executable code units. CSCls
can have multiple levels of descendents called Software Units (SU). Software
specifications document requirements/capabilities associated with each System,
Segment or CSCI module in the repository.

2. Architecture Unit Relations: These relations are specified for each architecture
unit. The interfaces are through data, transferred to or from the module or
through I/O or through references.

3. Data-Flow Relations: These relations provide information on units that partici-

pate in a Data Flow diagram of a process accomplished by modules. The data
flow relations are implemented in the programs by I/O, procedure calls or mes-

sage passing.

4. Type-Instantiation Relations: These relations relate units that contain type (and
generic) declarations with those where these declarations are used.

5. With/Use Relations: These relations relate units that are users of other units in a
library of programs.

6. Text of Comments — These are related to modules through keywords.

The software abstraction process combines the above relations to produce Application Abstrac-
tion Documents (AAD). Each document is named, identifies the software being documented, speci-
fies what kind of document it is, and specifies what are its relations to other documents. Units are
either Systems, Segments, Computer Software Configuration Items (CSCI). or Software Units
(SU).

The information collected during the software abstraction process is presented in six kinds of
documents. All the documents focus on the high level units (systems, segments, CSCIs) of the soft-
ware being abstracted. Two kinds of documents deal with the relations that exist between units:

1. Module Hierarchy Diagrams specify the part—of relation

2. Context Diagrams specify the visibility relation

Object Use Diagrams specify the subclass and instantiation relations that exist between units,
and between types and data structures. Three additional kinds of diagrams describe individual units:

1. Unit Structure Diagrams specify the internal structure of a unit and its internal
and external interactions.

2. Interface Tables describe in tabular form the interactions between a unit and its
environment.

3. Comment Sections contain the comments associated to units.

No application abstraction document at present provides information on the dynamic behavior of
the software being abstracted. In particular, no state diagram, event diagram, or timing diagram is

produced. At present, timing information must be obtained through existing documentation,
simulation and/or instrumentation of the source code.

The above collection of graphic views is prepared by the SRE user. The diagrams are exported from
SRE, catalogued by SSA’s Document Manager, and loaded into SSA’s search system. This can be
accomplished electronically or through scanning. These diagrams and tables can be searched and
portions retrieved to satisfy user interests. The SSA user progressively searches these diagrams
along with prior requirements documents or other related application information to attribute
capabilities and non—functional requirements to the diagrams. The diagrams can be cut and pasted
directly into the appropriate sections of the requirements specification as shown in Table 1. This
searching of the diagrams can also serve as the basis for exploring commonalities and variabilities
of requirements for domain/application engineering.

4. Status and Plans

The implementation of the converged SRE/SSA system will be completed during the summer
of 1994. The plan is to follow this with a demonstration project to evaluate the system’s usefulness
and effectiveness. The demonstration will consist of processing existing legacy code and producing
the necessary understanding and documentation. The demonstration will also compare existing
software documents with those produced by the automatic system from the code. The steps in the

project include:
Step 1: Selection of a software system to be used in the demonstration project with a participat-
ing DOD agency. The software system will have the following characteristics:
1. Existing software specification for later comparison with the automatically produced
documentation.

ii. Existing Ada code of significant size (e.g., up to 1000,000 lines of code).

This step will involve interviewing the DOD agency’s programs and staff. The selected
software will have to be available for automatic processing by CCCC.

Step 2: Process the selected code in the SRE. Produce the software abstraction reports discussed
in Section 3.

Step 3: Transfer the software abstraction reports from SRE to SSA.
Step 4: Load the existing software specifications into SSA.
Step 5: Produce software specifications for the selected software.

Step 6: Compare the new and old specifications and produce a list of differences.

5. Bibliography

[2167A]
[AHR]

[ARTH]

[SSA]

[LCCK]

[PRYW]

[PRYW2]

[PRYW3]

[SRE]

DOD-STD-2167A: Defense System Software Development, September 1983.

Ahrens, Judith, N. Prywes, and E. Lock. 4th Systems Reengineering Technology
Workshop, "Maintenance Process Reengineering: Toward a New Generation of
CASE Technology,” Monterey, CA, February 8-10, 1994.

Arthur, J. D., R. E. Nance, "Developing an Automated Procedure for Evaluating
Software Development Methodologies and Associated Products,” Technical Report
SRC-87-007, System Research Center, Virginia Polytechnic Institute, {1987.

Software Specification Assistant User’s Guide: Status Manager and Step—by-Step
Guide, Document Manager Guide, Evaluation Subsection Guide and Installation
Guide, delivered to the Joint Logistics Commander Computer Resource Manage-
ment Sub-Group and the Office of Naval Research by Computer Command and
Control Company as part of contract #N00014-91-C~0160, Decc.nber 1992.

Lock, E. and N. Prywes, Tri-Ada "92 Conrerence, "Requirements on Ada Reengi-
neering Technology from Past, Present and Future Systems,” Orlando, FL, Novem-
ber 16-20, 1992.

Prywes, Noah, G. Ingargiola, I. Lee, and M. Lee, 4th Systems Reengineering
Technology Workshop, "Reengineering Concurrent Software to Ada,” Monterey.
CA, February 8-10, 1994.

Prywes, N., Ingargiola, G. and Ahrens, J. " Automatic Reverse Engineering of Soft-
ware to Confirm/Update Requirements Specification,” Computer Command and
Control Company, Contract No. N00014-92-C-0242, Philadelphia, PA, 19103,
June 1993.

Prywes, N., Lee, I. "Integration of Software Specification, Reuse and Reengineer-
ing,” Computer Command and Control Company, Contract No.
N60921-92-C-0194, Philadelphia, PA. 19102, June 1995.

Software Re-engineering Environment (SRE)} Demonstration Guide, Version 5.0.
Computer Command and Control Company, Prepared Under Contract
N60921-92-C-0916, White Oak Lab., Silver Spring, MD, May 6, 1994.

(o] COMPUTER COMMAND AND CONTROL COMPANY

c CO>
c 2300 CHESTNUT STREET, SUITE 230 - PHILADELPHIA, PA 18103
215-854-0555 FAX: 215-854-0665

Technology for Re-Creating Documentation

4th Reengineering Forum
”Reengineering in Practice”

September 19-21, 1994
Victoria, BC, Canada

Dr. Judith Ahrensf, Mr. Evan Lock, and Dr. Noah S. Prywes*
Computer Command and Control Company
2300 Chestnut Street, Suite 230
Philadelphia, PA 19103
Tel: 215-854-0555, Fax: 215-854-0665
Email: lock@cccc.com

T Also with Drexel University
*Also with University of Pennsylvania

Abstract

There is a strong tendency in the Department of Defense Programs to re-develop new software
when legacy software can be reused at lower cost, reduced development time and higher quality
based on real-life experience. The decisions for re—developing software are frequently based on
inadequacy, or sometimes lack, of documentation and the difficulty of understanding the legacy soft-
ware. The cost of software understanding has been estimated at 50% of the cost of reengineering.

This paper describes an approach and toolset that synthesizes automatic processing of legacy
code to produce a graphical explanation of the software architecture, and to generate reliable soft-
ware specifications documents in accordance with DOD-STD instructions. The need for this capa-
bility is widely recognized.

This capability has been under development for the past 3 years. It consists of integrating the
Software Reengineering Environment (SRE), funded by the Naval Surface Warfare Center
(NSWC), and the Software Specification Assistant (SSA), funded by the Joint Logistics Command-
ers—Joint Policy Coordinating Group on Computer Resource Management (JLC-CRM). The devel-
opment is nearing completion and a demonstration project is planned.

1. MOTIVATION

At a recent workshop on Reengineenng (Fourth Systems Reengineering Technology Work-
shop. Februarv 8-11, 1994, Monterey, CA), several speakers reported that understanding legacy
st ftware accounts for 50% of the cost and time of reengineering. At this high cost. Program Manag-
ers tend to write off all or parts of the legacy software and develop new system modules or entirely
new systems. Thus, there has been a widely recognized need for automating software understand-
ing.

Another widely recognized problem is the frequent unreliability, incompleteness and some-
times total lack of software documentation. Software documentation is produced in many software
development projects as the last step and tends to be short—changed. There has been no effective
procedure to determine the quality of submitted documentation. The inadequacy of documentation
has also prevented verification that the software provides the capabilities established in planning.
specifications and contracting documents.

Programs across DOD need to be able to:

i. Check conformance with Software Specifications in periodic Contractor reviews
and upon delivery of a new system,

ii. Update obsolete specifications,
iii. Create specifications for undocumented software,

iv. Understand existing software architecture (for reuse).

The proposed capabilities will have a wide ranging impact on:

i. Reducing maintenance costs by graphically explaining the architecture and opera-
tion of the software.

ii. Increasing system life through adding new builds incrementally based on explaining
graphically the architecture and operation of the software.

iii. Facilitating modernization through exposing the steps necessary to execute the sys-
tem in a modern distributed computer communications environment.

iv. Improving quality and usefulness of systems through facilitating verification of a
system in reviews that assure conformance with the requirements, specification and
contract for the system.

The next section describes the two toolsets (and their interface) that are the basis for providing
the above capabilities. The third section describes how the two tools are used together to define an
approach to re—create documentation. Section 4 reviews status and plans.

2. TECHNOLOGY

Two automatic tools, used in the automation of software understanding and documentation, are
used to synthesize the existing documents and code to derive requirements specifications. They are:

¢ The Software Reengineering Environment (SRE) [SRE]: It has been de-
veloped under the sponsorship of the Naval Surface Warfare Center
(NSWCQ). It incorporates software translation to Ada (from CMS-2 and in
the future from FORTRAN) and the abstracting of Ada code to re-create
graphically the architecture and the data and control flow.

¢ The Software Specification Assistant (SSA) [SSA]: It provides tools
(COTS) for searching historical documents and the editing and formatting
necessary for creating and updating software specifications.
Each of these environments are described further below. These descriptions provide the basis
for explaining how the capabilities are synthesized as part of a cohesive approach for document re—
creation.

2.1 Software Reengineering Environment (SRE)
SRE incorporates the technologies of software traaslation, visualization, and understanding.
The SRE consists of two phases, Software Restructuring and Software Understanding.

Software Restructuring parses and translates CMS-2, Ada and, in the future, FORTRAN code,
statement by statement, into Entity—Relation—Attribute (ERA) diagrams of pseudo—~Ada [PRYW].
This diagramming scheme is called Elementary Statement Language (ESL) for Ada. Next, the
ESL~Ada is transformed repeatedly to obtain an Ada programming paradigm in a series of passes
that achieves 100% translation to Ada. Each pass translates different aspects of the programming
paradigm of the source language into the Ada programming paradigm (e.g., separating object speci-
fications from bodies). During the translation process, a number of sets of relations among program
statements are generated. The statements form nodes, and the relations form edges. in the ESL.-Ada
graphic diagrams.

Software Restructuring partitions the software into multi-level hierarchical software compo-
nents. Software Abstraction Documents (see Section 3) are then generated. They describe hierar-
chically the architecture of these components from different perspectives. Component diagrams are
stored in a graphic repository.

Software Understanding (SU) consists of query and retrieval of graphic diagrams that illustrate
the software from various perspectives. A graphic query language is provided for ad hoc browsing
of the Software Abstraction Documents in the graphic repository. These graphs show relations be-
tween high or low level hierarchical components. This facilitates understanding of the software’s
architecture as well as its detailed code [PRWY3]. Facilities are being developed to make changes to
the program, for debugging or program restructuring, via the graphics used for visualization. Soft-
ware visualization overcomes the essential invisibility (i.e. non—physical quality) of software by
representing graphically the program structure, control flow, and data. An abstract, graphical repre-
sentation can facilitate a software engineer’s visual perception and cognitive understanding of com-
plex software during debugging, monitoring, and especially, program restructuring. In this way,
maintenance can be performed on the reverse engineered design and/or transformed old code.

2.2 Software Specification Assistant (SSA)

SSA [SSA] was designed for project technical management. Itis an integrated set of informa-
tion repositories and tools for software specification of critical mission systems. It instructs and in-
forms novice to expert staff in specifying, updating and evaluating DoD-STD data item descriptions
(DIDs), including the System/Segment Specification (SSS), System/Segment Design Document
(S/S, Software Requirement Specification (SRS) and Interface Requirements Specification (IRS) of
DoD-STD-2167A (and similar documents on its planned successor DoD-STD-SDD) [2167A].

SSA maximizes the effectiveness of supervisory staff who are experts in the preparation of re-
quirements specifications, and provides an automated mechanism for novices to upgrade their skills.
SSA thus provides two modes of operation. In supervisory mode, using the Status Manager subsys-
tem, the supervisor structures the requirements specification tasks and monitors progress. In activity
mode, the Step—By-Step subsystem, guides a novice specifications analyst through the required
work processes. SSA thus embodies much of the knowledge found in supervisory staff, enabling an
organization to make efficient use of this scarce organizational resource.

SSA is composed of four customized subsystems. The function of the subsystems is as follows:
* Documentation Manager is used to create catalogs of application and ref-
erence documents in databases.
* Assignment Manager is used by a manager or supervisor to enter the work
plan for staff who compose or update documents.
* Step—By-Step guides users engaged in searching documents and compos-
ing/updating Requirements and Data Items.
¢ Evaluate provides feedback on the completeness of the specification cov-
erage [ARTH].
SSA also integrates the following commercial off-the—shelf software (COTS): document load-
ing and publishing (e.g., Interleaf, MS-WORD, or Word Perfect), Search (Zyindex), CASE (de-
pends on use by the Program Office).

The Assignment Manager subsystem enables a supervisor to create a documentation plan and
assign subordinates. The process is accomplished by selecting the appropriate function from the

Status Manager pulldown menu. For each project, tasks are allocated, organized and controlled
through a hierarchy of three lists: Things to Do, Target Documents, and Target Document Para-
graphs.

In the Things To Do List the supervisor enters the tasks that need to be accomplished. Examples
include: work on entries from an operational requirements document’s table of contents, work on
items from a functional decomposition, or work on items requiring specification. For each task, the
supervisor references a previously loaded document (or equivalent) that expands on the item in the
Things To Do List. For example, clicking on the Things to Do list reveals 4 definition of its entries.

The Target Documents List contains the names of specification documents to be created or
updated. The Target Document Paragraph contains the Paragraphs to be created.

At each of the three list levels, the user and the supervisor can record relevant instructions or
status information such as priority of the item, problems encountered in completing the item, or
sources of information used to complete the item.

After organizing the work needed to complete a plan, the supervisor assigns the work to subordi-
nates. The subordinate will use the Step—By-Step subsystem.

The Step—by-Step Subsystem guides the user through the process of preparing requirements
specifications. Step-by-step is an iterative process. Once atask and associated target documents are
selected, the user iterates, in various combinations (even during different sessions), to search for
application information and assistance, to compose data items, and to record a trace, until the se-
lected task is completed. Then, the user will select another task from the list of Things to Do and

repeat the process.

3. Approach: Interfacing SRE and SSA

The previous sections provided background on SSA and SRE. With these two capabilities
available, the next question to answer is — what are the necessary abstractions that the SSA user needs
to recreate specifications and can SRE produce these abstractions? The answer is that there are six
basic types of abstraction/information that comprise the interface between these two tools
[PRYW2].

The diagrams are created by traversing the repository for nodes with the following relations:

1. Hierarchy Relations: The entire repository is envisaged structured as an up-
side—down tree-like hierarchy. The root unit of the tree is called a System. Its
immediate descendants are called Segments. Segments can have as descendants
Segments or Computer Software Configuration Items (CSCI). CSCls can be ob-
ject declarations, database declarations or major executable code units. CSCls
can have multiple levels of descendents called Software Units (SU). Software
specifications document requirements/capabilities associated with each System,
Segment or CSCI module in the repository.

2. Architecture Unit Relations: These relations are specified for each architecture
unit. The interfaces are through data, transferred to or from the module or
through I/O or through references.

3. Data-Flow Relations: These relations provide information on units that partici-
pate in a Data Flow diagram of a process accomplished by modules. The data

flow relations are implemented in the programs by I/O, procedure calls or mes-
sage passing.

4. Type-Instantiation Relations: These relations relate units that contain type (and
generic) declarations with those where these declarations are used.

5. With/Use Relations: These relations relate units that are users of other units in a
library of programs.
6. Text of Comments — These are related to modules through keywords.

The software abstraction process combines the above relations to produce Application Abstrac-
tion Documents (AAD). Each document is named, identifies the software being documented, speci-
fies what kind of document it is, and specifies what are its relations to other documents. Units are
either Systems, Segments, Computer Software Configuration Items (CSCI), or Software Units
(SU).

The information collected during the software abstraction process is presented in six kinds of

documents. All the documents focus on the high level units (systems, segments, CSCls) of the soft-
ware being abstracted. Two kinds of documents deal with the relations that exist between units:

1. Module Hierarchy Diagrams specify the part—of relation

2. Context Diagrams specify the visibility relation
Object Use Diagrams specify the subclass and instantiation relations that exist between units,
and between types and data structures. Three additional kinds of diagrams describe individual units:

1. Unit Structure Diagrams specify the internal structure of a unit and its internal
and external interactions.

2. Interface Tables describe in tabular form the interactions between a unit and its
environment.

3. Comment Sections contain the comments associated to units.

No application abstraction document at present provides information on the dynamic behavior of
the software being abstracted. In particular, no state diagram, event diagram. or timing diagram 1s
produced. At present, timing information must be obtained through existing documentation,
simulation and/or instrumentation of the source code.

The above collection of graphic views is prepared by the SRE user. The diagrams are exported from
SRE, catalogued by SSA’s Document Manager, and loaded into SSA’s search system. This can be
accomplished electronically or through scanning. These diagrams and tables can be searched and
portions retrieved to satisfy user interests. The SSA user progressively searches these diagrams
along with prior requirements documents or other related application information to attribute
capabilities and non—functional requirements to the diagrams. The diagrams can be cut and pasted
directly into the appropriate sections of the requirements specification as shown in Table 1. This
searching of the diagrams can also serve as the basis for exploring commonalities and variabilities
of requirements for domain/application engineering.

4. Status and Plans

The implementation of the converged SRE/SSA system will be completed during the summer
of 1994. The plan is to follow this with a demonstration project to evaluate the system’s usefulness

and effectiveness. The demonstration will consist of processing existing legacy code and producing
the necessary understanding and documentation. The demonstration will also compare existing
software documents with those produced by the automatic system from the code. The steps in the
project include:

Step 1:

Step 2:

Step 3:

Step 4:
Step 5:
Step 6:

Selection of a software system to be used in the demonstration project with a participat-
ing DOD agency. The software system will have the following characteristics:

i. Existing software specification for later comparison with the automatically produced
documentation.

ii. Existing Ada code of significant size (e.g., up to 1,000,000 lines of code).

This step will involve interviewing the DOD agency’s programs and staff. The selected
software will have to be available for automatic processing by CCCC.

Process the selected code in the SRE. Produce the software abstraction reports discussed
in Section 3.

Transfer the software abstraction: reports from SRE to SSA.
Load the existing software specifications into SSA.
Produce software specifications for the selected software.

Compare the new and old specifications and produce a list of differences.

5. Bibliography

[2167A]
[AHR]

[ARTH]

[SSA]

[LOCK]

[PRYW]

[PRYW2]

[PRYW3]

[SRE]

DOD-STD-2167A: Defense System Software Development, September 1988.

Ahrens, Judith, N. Prywes, and E. Lock. 4th Systems Reengineering Technology
Workshop, "Maintenance Process Reengineering: Toward a New Generation of
CASE Technology,” Monterey, CA, February 8-10, 1994.

Arthur, J. D., R. E. Nance, "Developing an Automated Procedure for Evaluating
Software Development Methodologies and Associated Products,” Technical Report
SRC-87-007, System Research Center, Virginia Polytechnic Institute, 1987.

Software Specification Assistant User’s Guide: Status Manager and Step—by-Step
Guide, Document Manager Guide, Evaluation Subsection Guide and Installation
Guide, delivered to the Joint Logistics Commander Computer Resource Manage-
ment Sub-Group and the Office of Naval Research by Computer Command and
Control Company as part of contract #N00014-91-C-0160, December 1992.

Lock, E. and N. Prywes, Tri~Ada "92 Conference, "Requirements on Ada Reengi-
neering Technology from Past, Present and Future Systems,” Orlando, FL, Novem-
ber 16-20, 1992.

Prywes, Noah, G. Ingargiola, I. Lee, and M. Lee, 4th Systems Reengineening
Technology Workshop, "Reengineering Concurrent Software to Ada.” Monterey,
CA, February 8-10, 1994.

Prywes, N, Ingargiola, G. and Ahrens, J. ”Automatic Reverse Engineering of Soft-
ware to Confirm/Update Requirements Specification,” Computer Command and
Control Company, Contract No. N0O0O014-92-C-0242, Philadelphia. PA, 19103.
June 1993.

Prywes, N., Lee, I. "Integration of Software Specification, Reuse and Reengineer-
ing,” Computer Command and Control Company, Contract No.
N60921-92-C-0194, Philadelphia, PA, 19103, June 1993.

Software Re—engineering Environment (SRE) Demonstration Guide, Version 5.0,
Computer Command and Control Company, Prepared Under Contract
N60921-92-C-0916, White Oak Lab., Silver Spring, MD, May 6, 1994,

Technology for
Re-creating Documentation

4th Reengineering Forum
September 19-21, 1994
Victoria, BC, Canada

L

Mr. Evan Lock, President Computer Command & Control Co.
Phone: 215-854-0555 2300 Chestnut St., Suite 230
Fax: 215-854-0665 Philadelphia, PA 19103
E-mail: lock@cccc.com
Outline

1. Motivations
2. Specification Technology (SSA)
3. Software Reengineering Environment (SRE)

4. Converging SSA with SRE

&

Copyright, 1994, CCCC.

Customers/Payoff
For Specification Re-creation Capability

Projects Need To Be Able To:

» Check Conformance to Software Specifications
~ Periodic Review of Contractor
- Upon System Delivery

* Update Obsolete Specifications
» Create Specifications for Undocumented Software

» Understand Existing Software Architecture (for reuse, etc)

<

Specification Re-creation Project Description

Offer An Automated Capability to Facilitate the
Process of Re-creating Software Requirements
Specifications (SSS, SRS, IRS) From Code.

Improve Understanding of Software To:

¢ Reduce Maintenance Costs
* Increase System Life

« Facilitate Modernization
 Better Perform Verification

.

Copyright, 1994, CCCC.

Convergence of SSAand SRE

Diagrams

Software
Diagrams
and Code

Document
Repository

Process of Re-creating Software Specifications:

Software Reengineering Software Specification
Environment (SRE) Assistant (SSA)
[Funded by NSWC] {Funded by CRM]
Software Software Software

Specs For
Project
or Rause

o

Architecture and Capabilities of
Software Reengineering Environment
(SRE)
Legacy Software
Ada - Analysis
- Graphic
Representations
- Memory
Allocation
(CMS-2FORTRAN)
Parsers ol - Reorganization
Translators (Oblect Oriented) Graphic
- Relationships Repository
and interfaces
{snumeratad ister)
0
0

Documentation

- Architecture
- Dataflow

- Interfaces

- Objects

- Compillation
Dependency

Ada Code

- for Views

Copyright, 1994, CCCC.

Steps In Generating The SRE Graphic Repository

Initially Represent Entire
Software Graphically

____ BottomUpBuld
Of Top-Down Architectural Hierarchy

Produce Graphic Views
For Each Architectural Unit &
c

Initially Represent Entire Software Graphically

Nodes: Ada Statements

Variable Reference
Call
. Message

Edges: 1.
2
3
4. 1/0
5
6

. Generic/Instantiation

. With/Use i

Copyright, 1994, CCCC.

Sample "Scope" Relations

Variable
Type

Variable :

Sample "Non-Scope"” Relations

For a PROCEDURE SPEC:

o CALLed by a procedure body

e MEMORY access

¢ TYPE instantiation

o CONTEXT with a package body
o CALLS a task entry

» SCHEDULES a task spec

* I/O access to a file

4

Copyright, 1994, CCCC.

Bottom-Up Build of
Top-Down Architectural Hierarchy

Nodes: Architectural Units
Descendent Units Represent Details

Of Parent Unit

Edges: Unit Interface (as above)

&

Graphical Retrievals

= Select a "Base View"
= Query "Base View" to Create "Sub-View"
~ Select Root Node ("Within Package X...")
- Select Node Type ("Show Me All Procedures...")
- Select Relations ("and Their I/0...")
- Select Depth ("and Any Children")
= Query Sub-Views as Needed
= Save Sub-Views as Needed (for Documentation)
= Generate Ada From Any View

i H
| ,
| i

| .

Copyright, 1994, CCCC.

SSA Functionality
Within the Systems Life Cycle

Implementation

Preliminary ! Requirements Study, Analysis
Phase ——————— and Specification Phase —————#r@— Phase
Existing
Text and Text and
Graphiics Graphic
from Requirements
Preliminary for Ngxt
Requirements Version
and Previous
Versions

%

SSA Subsystems

Program Manager
Options Yindow Help

" File

: SSA
Document Assignment A E.:a‘it';;ate
Manager Manager

M'wlcroso.ﬂ
Excel

Compose

Search
2yindex

DTP Interleaf

‘opyright, 1994,

CCCC.

SSA Payoff in TAMPS Demo Project

Improve Project Planning and Products

* Prioritize Functions

e Evaluate Cost Benefit Tradeoffs
¢ Select Upgrade Path

» Reduce Risks

» Improve Quality

e Extend Life

¢ Reduce Costs

Enhance Expertise of Staff i

SSA Distributi_o_n to DOD

CCCC Has Support from the JLC-CRM
to Distribute SSA to Program Offices
Across DOD.

| » Packaging
« Telephone Support
% Bug Fixes
» Training (Separate)
Contact for more information @a

Copyright, 1994, CCCC.

Necessary Software Abstractions for
Software Requirements Speciiications

For Each Level of a System's Architecture

(Top Level, Segment, CSCI,...):

» Hierarchy Diagrams
= Data Flow Diagrams
= |[nterface Tables

= Context Diagrams

= Object Use Diagrams
= Comment Text

©

Mapping Software Abstractions Onto
DOD-STD-2167A Requirements Specifications

Abstraction | S/SS System | S/SDDSystem | SRS CSCi IRS CSC!
Document Segment J/Segment
Hierarchy Par. 3.1,3.2.3 | Par. 4 System Par. 3.1 CSC! Par. 3.1 CSCI
Diagram System Architecture External Internal Interface
Architecture Diagram interface Diagram
Diagram Diagram
Fiow Diagram Par. 3.1 CSCI
{ntemal Interface
Diagrams
Intertace Table Par. 3.3 CSCt Par. 3.x.1 Data
intenal Interface | Element Table
Diagrams
Context Diagram | For Ada For Ada For Ada For Ada
Compilation Compilation Compitation Compilation
Object/Use For Object For Object For Object For Object
Diagram Orientation Orientation Orientation Orientation
Comments Text | For Capabilities | For Capabilities | For Capabilities | For Capabilities

Cnpyright, 1894, CCCC.

Demonstration Project Overview

Organization (MICOM) Supplies:
= Existing Software Specifications (SSS, IRS, SRS)
= Existing Code
- Preferably Ada
- Less Than 100K SLOC

Project Activities:
= Finalize Program Selection
= Process Code to Reverse Engineer Software Abstractions
= Assemble Specifications with Abstractions Using SSA
= Compare New Specifications with Existing

= Evaluate Process and Products i

Copyright, 1994, CCCC.

" Centract Number N00014-92-C-0242 Final Report

Reengineering DOD-STD-2167A Requirements Specifications

APPENDIX I

EXAMPLES OF DOCUMENTATION OF

SOFTWARE UNITS

(FOR TOP TWO SOFTWA RE UNITS OF AVIONICS)

14

Thu, Apr 28, 1994 09:22:50 Comments for: Avionics (1)

The Avionics system contains the pieces necessary to
simulate a helicopter fly-to-point real-time routine
utilizing a series of tasks.

Page 1

Software Unit: Avionics (1)

v Wed,"Apr 27, 1994 16:36:24 AVIONICS 1 (SWU Ada)

-~ SYSTEM : AVIONICS(1l)
-~ UNDCL_SYM_REC

-~ PACKAGE TEXT_IO ;
-- PACKAGE CNF_PACKAGE :
-- PACKAGE M_TYPES ;
-- PACKAGE CONV ;
-- PACKAGE MATH_OP_U ;
-- PACKAGE UNPACK_E ;
-- PACKAGE PACK_E :
-~ PACKAGE C4_SEQUENTIAL_IO ;
-- PACKAGE SEQUENTIAL_IO ;
-- PACKAGE MODEL_UFCN ;
-- PACKAGE HELI_MBX_PACKAGE ;

-- PUT_LINE

FILE_TYPE;

-- PROCEDURE CREATE (1) ;

-- MBX_WRITE
-~ PUT_LINE

-~ MBX_READ :

FILE_TYPE;
FILE_TYPE;
FILE_TYPE;

-- PUT_LINE : FILE_TYPE;
-- PUT_LINE : FILE_TYPE;
-- PUT : FILE_TYPE;
-- PUT : FILE_TYPE;
-- PUT : FILE_TYPE;
-- PUT_LINE : FILE_TYPE;
-- PUT : FILE_TYPE;
-- PUT : FILE_TYPE;

-~ GET_LINE FILE_TYPE;
-~ SKIP_LINE FILE_TYPE;
-~ PUT_LINE FILE_TVPE;
-- PUT_LINE FILE_TVYPE;
-- Mbx_Write FILE_TYPE:
-- PUT_LINE FILE_TYPE;
-=- PUT_LINE FILE_TYPE;
-~ Mbx_Read FILE_TVPE;
-=- PUT_LINE FILE_TYPE;
-- PUT_LINE FILE_TYPE;
-- Mbx_Write FILE_TYPE;

~- PACKAGE HELI_PROC_PACKAGE ;
-~ PROCEDURE CLOCK (1) ;
-- PROCEDURE DISPLAY (1) ;
-- PROCEDURE PARSER (1) ;
-- PROCEDURE SIMULATE (1) ;
-- EXAMPLE_HELI_IO_MBX P : 3 ;
-- EXAMPLE_HELI_SIM MBX P : 3 ;
-~ END UNDCL_SYM_REC
-~ "The Avionics system contains the pieces necessary to*
-- " simulate a helicopter fly-to-point real-time routine*
-- " utilizing a series of tasks."
-~ SYSTEM : HELI_MAILBOXING
-- SYSTEM : HELI_PROCEDURES
-- SYSTEM : HELICOPTER

Page 1

e e kN Yo . - S

o Thu, Apr 28, 1994 09:37:08 Comments for: Heli_Mailboxing (1.1) Page 1

The Heli Mailboxing system contains all the componenets
related to message passing among the excuting tasks.

- ’:\y
-— - - it — [——
v - s ™ »’
SO ey AR B W“v-‘ s G o8y |m‘lb‘ﬂq.“\l¥ lu-u_?un-—u-‘ e s
o

Software Unit: Heli_Mailboxing (1.1)

S |

s Wed, Apr 27, 1994 16:36:25 HELI MAILBOXING 1.1 (SWU Ada) Page 1

~- SYSTEM : HELI_MAILBOXING(1.1l)
-- UNDCL_SYM_REC
-- PACKAGE CNF_PACKAGE ;
-- PACKAGE TEXT_IO ;
-~ END UNDCL_SYM_REC
-- SYSTEM : HELI_MAILBOXING
-- "The Heli_Mailboxing <. 'stem contains all the componenets"®
.- related to message passing among the excuting tasks."
-- SYSTEM : HELI_MBX_WITH_AND_USE
PACKAGZ HELI_MBX_PACKAGE IS
CONF_NAME : STRING(1..4) := “HELI" ;
MAX_D : NATURAL:=7 ;
TASK TYPE EXAMPLE_HELI_IO_MBX IS
ENTRY QTEST (STATUS : OUT INTEGER) ;
ENTRY SEND (MSG : IN STRING) ;
ENTRY RECEIVE (MSG : OUT STRING)
END EXAMPLE_HELI_IO_MBX ;
TYPE A_EXAMPLE_HELI_IO_MBX IS ACCESS EXAMPLE_HELI_IO_MBX :
EXAMPLE_HELI_IO_MBX_P : A_EXAMPLE_HELI_IO_MBX ;
TASK TYPE EXAMPLE_HELI_SIM_MBX IS
ENTRY QTEST (STATUS : OUT INTEGER) ;
ENTRY SEND (MSG : IN STRING)
ENTRY RECEIVE (MSG : OUT STRING } ;
END EXAMPLE_HELI_SIM MBX ;
TYPE A_EXAMPLE_HELI_SIM_MBX IS ACCESS EXAMPLE_HELI_SIM_MBX ;
EXAMPLE_HELI_SIM_MBX_P : A_EXAMPLE_HELI_SIM_MBX ;
END HELI_MBX_PACKAGE ;
-- SYSTEM : HELI_MBX_PACKAGE

Best
Available
Copy

